Nicholas Priebe

Department of Neuroscience

nico@austin.utexas.edu

Nicholas Priebe received his Ph.D. in Physiology from the University of California, San Francisco in 2001 after studying adaptation in motion-selective neurons with Stephen Lisberger. Dr. Priebe was a postdoctoral fellow with David Ferster at Northwestern University, investigating the mechanisms underlying neronal responses in primary vusual cortex. The massive expansion of cerebral cortex is a hallmark of the human brain. We know that the cortex plays an essential role in our perceptions and actions. Sensory inputs from the periphery are transformed in the cortex, allowing us to generate appropriate motor outputs. Dr. Priebe's lab studies the cortical circuitry and the computations that underlie such transformations, using vision as a model system. In visual cortex, neuronal circuitry performs the computations that extract motion, orientation and depth information about the visual environment from subcortical inputs. For example, primary visual cortex (V1) is the cortical location in which information from the two eyes is first integrated, ultimately allowing us to perceive depth in our visual field. By understanding the circuitry that underlies these kinds of computations, we gain insight into similar computations that occur throughout cortex.

Lab website