Synchrony in stochastic spiking neural networks

Neural systems propagate information via neuronal networks that transform sensory input into distributed spiking patterns, and dynamically process these patterns to generate behaviorally relevant responses. The presence of noise at every stage of neural processing imposes serious limitation on the coding strategies of these networks. In particular, coding information via spike timings, which presumably achieves the highest information transmission rate, requires neural assemblies to exhibit high level of synchrony. Thibaud Taillefumier and collaborators are interested in understanding how synchronous activity emerges in modeled populations of spiking neurons, focusing on the interplay between driving inputs and network structure. Their approach relies on methods from Markov chain, point processes, and diffusion processes theories, in combination with exact event-driven simulation techniques. The ultimate goal is two-fold: 1) to identify the input/structure relations that optimize information transmission capabilities and 2) to characterize the “physical signature’’ of such putative optimal tunings in recorded spiking activity.