Linear least-square regression

Thibaud Taillefumier

1 Problem set-up

Suppose we have a \(m \)-dimensional vector \(\mathbf{y} = \{y_1, \ldots, y_m\} \) whose components represent scalar output measurements to be related \(n \) \(m \)-dimensional input vectors \(\mathbf{x}_1, \ldots, \mathbf{x}_n \). We want to find weights \(\mathbf{w} \) so that one can predict the measurement outcomes \(\mathbf{y} \) as a linear combination of input vectors \(\mathbf{x}_1, \ldots, \mathbf{x}_n \):

\[
\mathbf{y} \approx \sum_{i=1}^{n} w_i \mathbf{x}_i.
\]

In principle, we can repeat measurement at will so that \(m \) can be very large, whereas \(n \) is set by the complexity of the model and should be assumed comparatively small \(n < m \). Because the vector \(\mathbf{y} \) lies into a much larger \(m \)-dimensional space than the at most \(n \)-dimensional space spanned by \(\mathbf{x}_1, \ldots, \mathbf{x}_n \), it is in general impossible to perfectly reconstruct \(\mathbf{y} \). For this reason, the objective of linear least-square regression is to minimize the prediction error rather than achieving perfect reconstruction. Specifically, in linear least-square regression, we look for weights \(\mathbf{w}^{\star} \) that minimize the squared prediction error \(E(\mathbf{w}) \), which can be formally stated as follows:

\[
\mathbf{w}^{\star} = \arg \min_{\mathbf{w}} E(\mathbf{w}) \quad \text{with} \quad E(\mathbf{w}) = \sum_{i=1}^{m} \left(y_i - \sum_{j=1}^{n} x_{ij}w_j \right)^2.
\]

The squared prediction error \(E(\mathbf{w}) \) can be interpreted geometrically as the squared Euclidean length of the residual vector defined by \(\mathbf{y} - \sum_{i=1}^{m} w_i \mathbf{x}_i \). Thus \(E(\mathbf{w}) \) can also be written as

\[
E(\mathbf{w}) = \| \mathbf{y} - X\mathbf{w} \|^2,
\]

where \(\| \mathbf{u} \| \) denotes the length of vector \(\mathbf{u} \) and where \(X \) is the matrix whose columns are \(\mathbf{x}_1, \ldots, \mathbf{x}_n \). As expected, the squared prediction error is a non-negative
number that is zero should the output \(y \) lies in the span of \(x_1, \ldots, x_n \). However, we know that perfect reconstruction is in general impossible due to the dimensionality mismatch \(m > n \) and we resort to look for weights \(w^* \) that minimize the Euclidean square length of the residual vector. We are going to fulfill this program in the next section via a combination of calculus and linear algebra. Before we go ahead, remember that the nexus of the problem stems from the dimensionality mismatch \(m < n \), which can be stated concretely by saying that the matrix \(X \) has many more rows than columns.

2 Solution via calculus and linear algebra

The first step to linear least-square regression is to compute the derivative of the squared prediction error \(E \) with respect to the weight \(w_k \), while holding all the other weights fixed:

\[
\frac{\partial E(w)}{\partial w_k} = \sum_{i=1}^{m} \frac{\partial}{\partial w_k} \left(y_i - \sum_{j=1}^{n} x_{ij} w_j \right)^2,
\]

\[
= 2 \sum_{i=1}^{m} \left(y_i - \sum_{j=1}^{n} x_{ij} w_j \right) \left[\frac{\partial}{\partial w_k} \left(y_i - \sum_{j=1}^{n} x_{ij} w_j \right) \right].
\]

The term in between square bracket is actually much simpler than it looks as it is the derivative of a linear function of \(w_k \) with linear coefficient \(x_{ik} \).

\[
\frac{\partial}{\partial w_k} \left(y_i - \sum_{j=1}^{n} x_{ij} w_j \right) = x_{ik}.
\]

The weights \(w^* \) that minimized the squared prediction error \(E \) are those weights for which the derivatives of \(E \) with respect to any \(w_k \) is zero. Based on our computation of the derivative of the squared prediction error, this means that the weights \(w^* \) satisfy the following set \(n \) linear equations:

\[
\frac{\partial E(w)}{\partial w_k} = 2 \sum_{i=1}^{m} \left(y_i - \sum_{j=1}^{n} x_{ij} w_j \right) x_{ik} = 0, \quad \text{with } 1 \leq k \leq n.
\]

The above set of equations can be conveniently expressed in matrix form by using the transpose operation. Indeed, using the fact that \(x_{ik} = (X^T)_{ki} \), we can write the system of equation in matrix form as

\[
X^T (y - Xw) = 0,
\]
showing that the weights w^* are solution of the matrix equation

$$(X^T X) w = X^T y.$$

The matrix $(X^T X)$ is a n-by-n square matrix that is invertible if $n \leq m$ (which is true) and if the matrix X has rank n, i.e. if the columns of X are linearly independent (which need to be checked). Under this assumption of invertibility, the weight w^* are obtained via matrix inversion:

$$w^* = (X^T X)^{-1} X^T y.$$

Moreover the best approximation to the original vector y, denoted by y^*, is given by:

$$y^* = X w^* = X (X^T X)^{-1} X^T y.$$