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1 Problem setting

Suppose you are presented with data under the form of a sequence of d-dimensional
vectors xi, 1 ≤ i ≤ n. This is a very general setting. For instance, the data
sequence can be a collection of membrane potential waveforms (as in spike sorting)
or a set of images represented as a vector of pixels (as in machine learning). Taking
the convention to represent data as a column vector

xi =


x1,i
x2,i

...
xd,i

 ,
we can pull all the data together and form the data matrix

X =
[
x1 x2 . . . xn

]
=


x1,1 x1,2 . . . x1,n
x2,1 x2,2 . . . x2,n

...
...

xd,1 xd,2 . . . xd,n

 ,
where each column is a data sample. Analyzing—and hopefully understanding—
the result of an experiment often consists in uncovering regularity or structure in
the data matrix. Unfortunately, measured data is often “messy” in the sense that
it is too high-dimensional for us to detect structure by direct inspection and in the
sense that noise and/or redundancy often impairs data visualization.

Principal Component Analysis (PCA) is a handy tool to reveal structure via di-
mensionality reduction and denoising of the data. In a nutshell and loosely speak-
ing, PCA consists in detecting characteristics “features” of the data that can be
ranked by degree of relevance: the more relevant a feature, the more it explains the
variability of the data. PCA is successful when considering only a few of the most
relevant “features” is enough to describe the data satisfactorily. Thus, successful
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PCA offers the possibility to perform dimensionality reduction as the data can be
represented in a space whose dimension is specified by the number of kept “fea-
tures”. At the same time, successful PCA can be seen since denoising of the data
as the ignored “features” are most likely due to noise or redundancy in the data
collection process.

Before making the above statements more precise, we need to first make the
assumption that our data vector has zero mean. Such an assumption incurs no loss
of generality as we can always subtract the sample mean from the original data
samples to form a zero-mean vector sequence:

xi ←− xi − 〈xi〉 .

The approach taken by PCA is to look for data “features” in the data covariance
matrix defined as

CXX =
1

n− 1
XXT =


〈x21,i〉 〈x1,ix2,i〉 . . . 〈x1,ixd,i〉
〈x2,ix1,i〉 〈x22,i〉 . . . 〈x2,ixd,i〉

...
...

〈xd,ix1,i〉 〈xd,ix2,i〉 . . . 〈x2d,i〉


for zero mean data. The reason for looking for features of X in the covariance
matrix CXX is that if a few “features” are enough to characterize the data, we ex-
pect the data to lie on a low-dimensional manifold, as opposed to fill the whole
d-dimensional space it lives in. If that low-dimensional manifold is not too convo-
luted, it will lie into a low-dimensional vectorial space and the covariance matrix
will capture the few directions along which the data is primarily varying. Notice
that an intrinsic limitation to PCA is that it can only detect linear features and as
such, it is not well-suited to discover data features that result from highly non-linear
transformation of the raw data.

2 The idea behind PCA

Given a data matrix X , let us look for the direction, i.e. the unit vector v, such that
the orthogonal projection of the data onto v best captures the overall variability
of the data. The projection coefficients of each data sample xi onto v defines a
collection of numbers ci, 1 ≤ i ≤ n, which can be written in vectorial form as[

c1 c2 . . . cn
]
=
[
vTx1 vTx2 . . . vTxn

]
= vTX .
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The variance of the data accounted by the vector v is defined as the variance the
projection coefficients c, which can be expressed as:

V(c) =
1

n− 1

n∑
i=1

c2i =
1

n− 1

[
c1 c2 . . . cn

]

c1
c2
...
cn

 =
1

n− 1
vTX(vTX)T .

Now, our problem is to find the unit vector v? for whichV(c) is maximum, which
can be stated formally as

v? = arg max
‖v‖2=1

V(c) ,

where the suffix expression under max indicates that we restrain our search to
unit vectors. In order to tackle the above optimization problem, it is convenient to
first reformulate the variance V(c) in terms of the covariance matrix CXX , which
contains all the information required for PCA:

V(c) =
1

n− 1
vTX(vTX)T = vT

(
1

n− 1
XXT

)
v = vTCXXv ,

Our optimization problem consists then in finding

v? = arg max
‖v‖2=1

vTCXXv .

The only difficulty involved in this problem is the fact that we restrain ourselves
to unit vector. Without this constraint, we would just look for v? by setting the
derivative of vTCXXv with respect to the components of v to zero and solve the
resulting system of equations. Also not formally exact, it turns out that this ap-
proach gives the right answer anyway. To see why, we need to realize that we can
take into account the constraint of unit length by optimizing the function

F (v, λ) = vTCXXv − λ
(
‖v‖2 − 1

)
,

=
∑
i

∑
j

(CXX)ijvivj − λ

(∑
i

v2i − 1

)
,

which depends on v and a new parameter λ called the Lagrangian multiplier. No-
tice that if ‖v‖ = 1, we have F (v, λ) = vTCXXv. If ‖v‖ 6= 1, it is always
possible to make F as positive or negative as possible by varying λ and there is no
optimum. These loose observations are the reason for introducing the function F
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and a complete justification of this fact is beyond the scope of this class. Let us
directly proceed with the optimization of F by first computing the derivatives with
respect to vk:

∂F (v, λ)

∂vk
=

∑
i

(CXX)ikvi +
∑
j

(CXX)kjvj − 2λvk ,

= 2
∑
i

(CXX)kivi − 2λvk ,

where we have used the fact that CXX is a symmetric matrix. Setting these deriva-
tives to zero yields a system of d equations:

∂F (v, λ)

∂vk
= 0 ⇔

∑
i

(CXX)ikvi = λvk .

This system can be conveniently written under matrix form as

CXXv = λv ,

making apparent the fact that the vector v that maximizes the projected variance is
an eigenvector of CXX . Moreover, setting the derivative of F with respect to λ to
zero yields

∂F (v, λ)

∂λ
=
∑
i

v2i − 1 = ‖v‖2 − 1 ,

which is not a problem since eigenvectors are defined modulo their length: we
can always chose a unit eigenvector. Now which eigenvector to choose? By the
spectral theorem, we know that, in general, symmetric matrices have d distinct real
eigenvalues si, 1 ≤ i ≤ d. Moreover for covariance matrices, we know that these
eigenvalues are all positives. Suppose, we pick an eigenvector v of unit length
associated to eigenvalue λ. Then we have

F (v, λ) = vTCXXv = λvTv = λ ,

where the first and last equalities are due to the fact ‖v‖ = 1 and the second
equality is due to the fact v is a λ-eigenvector. This shows that, to maximize
vTCXXv, one has to choose the eigenvector associated with the top eigenvalue of
the spectral decomposition of CXX .

The above analysis shows that we can extract from the covariance matrix a par-
ticular direction that best accounts for the data variability. The key idea is to use
linear algebra to find that direction as the top eigenvector of the data covariance
matrix. The following section generalizes this idea to considering all the eigenvec-
tors of the covariance matrix and introduces PCA as the “best” change of basis to
account for data variability.
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3 PCA and change of basis

The most direct way to understand PCA is to consider the following linear algebra
question: assuming the data is living in a d-dimensional vectorial space, what is
the best choice of basis to represent the data? Intuitively, a “good” basis would
be a basis in which we expect the data structure to be salient. However it is hard
to imagine an automated procedure that produces such a basis without knowledge
of the data characteristic “features ”in the first place. Alternatively, we can try to
find the basis in which the data covariance matrix is as simple as possible, that is
under a diagonal form. Remember that the data covariance matrix is diagonal if
the components of the centered data vector are uncorrelated. PCA achieves such a
goal.

To see how it works, let us remember that a change of basis affects the co-
ordinates of the data via a change of matrix P . Specifically, if xi is the original
data coordinate vector, the new coordinate vector yi is obtained via matrix multi-
plication by P : yi = Pxi. Incidentally, we can consider the data matrix in the
new coordinates: Y = PX where P is the same yet-to-be-defined change-of-basis
matrix that simplifies the data covariance. To find P , we are going to use the fact
that the covariance matrix of the new coordinates CY Y is related to the covariance
matrix of the original coordinates CXX by:

CY Y =
1

n− 1
Y Y T =

1

n− 1
(PX)(PX)T = P

(
1

n− 1
XXT

)
P T = PCXXP

T .

Now from the previous section, we know that a good candidate basis should include
the top eigenvector of Cxx. This suggests utilizing the spectral theorem to consider
the full eigen decomposition of CXX

CXX = V DV T , with D =


s1 0 . . . 0
0 s2 . . . 0
...

...
0 0 . . . sd

 and

where the eigenvalues are such that s1 ≥ s2 ≥ . . . ≥ sd ≥ 0 and where the matrix
U is orthogonal, i.e. UUT = I . This allows us to rewrite the covariance CY Y

under the form

CY Y = PCXXP
T = PV DV TP T = (PV )D(PV )T ,

which makes apparent what is the “good” choice for the change-of-basis matrix P .
Choosing P as equal to the orthogonal matrix obtained via eigen decomposition,
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i.e. P = V −1 = V T , yields

CY Y = (PV )D(PV )T = (V −1V )D(V −1V )T = IDI = D .

Thus, when considered in the basis defined by the eigenvectors of CXX , the co-
variance of the data is equal to the diagonal matrix D, whose diagonal entries
satisfies s1 ≥ s2 ≥ . . . ≥ sd ≥ 0. As intended, all the off-diagonal terms are zero,
which means that the covariance between the data components in the eigenvector
basis is zero: 〈yiyj〉 = 0. Moreover, as V is an orthogonal matrix, we can inter-
pret the component of y as the projection coefficient of x onto the eigenvector vi,
1 ≤ i ≤ d which constitutes an orthonormal basis:

y = V Tx =


vT
1

vT
2
...
vT
d

x =


vT
1 x

vT
2 x
...

vT
d x

 .
In turn, we can interpret the singular value si as the variance of the data when
projected onto the eigenvector vi.

Depending on the field of studies, the eigenvectors v are also called principal
components or singular vectors. These eigenvectors can be thought of as data “fea-
tures” that can be retrieved from the data covariance matrix. Projecting the data on
the first k eigenvectors produces a k-dimensional representation while preserving
as much of the data variability as possible. Indeed, the data variability captured by
the first k eigenvalues is the sum of the k first eigenvalues

k∑
i=1

V(yi) =
k∑

i=1

1

n− 1

n∑
i=1

(vT
k xi)

2 ,

=

k∑
i=1

vT
k

(
1

n− 1
XXT

)
vk ,

=

k∑
i=1

vT
k CXXvk ,

=
k∑

i=1

sk ,

where we remember that the eigenvalues are ranked by decreasing order. The frac-
tion of the data variability accounted by the first k components is given by

s1 + . . .+ sk
s1 + . . .+ sk + . . .+ sd

,
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where the denominator s1 + . . . + sk + . . . + sd is the total variance of the data.
The closer fk is to one the more faithful is the projection, i.e. the more accurate is
the dimensional reduction.
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