Sample statistics and linear regression
Mean

\(\{ x_1, \cdots, x_N \} \)

\[\langle x \rangle \equiv \frac{1}{N} \sum_{i=1}^{N} x_i \quad \text{sample mean} \]

\(\text{mean}(x) \)

other notation: \(\bar{x} \)
Binned version of mean

\[
\left\{ x_1, \ldots, x_N \right\} \quad \text{N samples of variable } x
\]

\[
\left\{ c_1, \ldots, c_B \right\}, \quad B \text{ bins}
\]

\[
\left\{ n_1, \ldots, n_B \right\} \quad \text{counts per bin}
\]

\[
\langle x \rangle \equiv \frac{1}{N} \sum_{i=1}^{B} n_i c_i \quad \text{sample mean}
\]
Variance

\{x_1, \cdots, x_N\}

\langle (x - \langle x \rangle)^2 \rangle \equiv \frac{1}{N - 1} \sum_{i=1}^{N} (x_i - \langle x \rangle)^2 \quad \text{sample variance}

a measure of the “scatter”/spread of the data around its mean value

homework: show that \(\langle (x - \langle x \rangle)^2 \rangle = \langle x^2 \rangle - \langle x \rangle^2 \)
Standard deviation

\[\left\{ x_1, \cdots, x_N \right\} \]

\[\sqrt{\langle (x - \langle x \rangle)^2 \rangle} \quad \text{standard deviation} \]
Covariance

$$\{x_1, \cdots, x_N\} \{y_1, \cdots, y_N\}$$

N samples each of variables x, y

$$C(x, y) \equiv \frac{1}{N - 1} \sum_{i=1}^{N} (x_i - \langle x \rangle)(y_i - \langle y \rangle)$$

sample covariance

($C(x, x)$ is simply sample variance of x)
Covariance: what does it measure?

\[C(x, y) \equiv \frac{1}{N - 1} \sum_{i=1}^{N} (x_i - \langle x \rangle)(y_i - \langle y \rangle) \]

• If \(x, y \) both deviate from their means together (both up then both down) then terms in sum are positive, \(C(x,y) > 0 \).

• If \(x,y \) deviate from their means independent of each other, then terms in the sum are randomly positive and negative, \(C(x,y) \sim 0 \).

• If \(x,y \) deviate from their means in opposite directions, then terms in sum are negative, \(C(x,y) < 0 \).

Literally, covariance is a measure of co-variation.
Covariance example I

\(x, y \) independent

\[
\begin{align*}
x &= \text{randn}(1000, 1) \\
y &= \text{randn}(1000, 1)
\end{align*}
\]

\[
C(x, y) = 0.009; \\
C(x, x) = 1.069
\]

\(x > 0, y \) around 0 without bias
Covariance example II

\[x, y \text{ independent} \]

\[x = 0.2 \cdot \text{randn}(1000, 1) \]
\[y = 0.2 \cdot \text{randn}(1000, 1) \]

\[C(x, y) = 0.001; \quad C(x, x) = 0.0407 \]
Covariance example III

\(x, y\) not independent

\[x = \text{randn}(1000, 1)\]
\[y = 0.5 \times x + 0.5 \times \text{randn}(1000, 1)\]

\[x > 0, y > 0\]

\[C(x, x) = 0.907; \ C(x, y) = 0.464; \ C(y, y) = 0.469\]
Alternative notation

- **Mean:** \(\langle x \rangle, \bar{x}, \mu_x, E(x) \)

- **Variance:** \(\langle x^2 \rangle - \langle x \rangle^2, \bar{x}^2 - \bar{x}^2, \sigma_x^2, \text{var}(x), C(x, x) \)

- **Covariance:**
 \(\langle xy \rangle - \langle x \rangle \langle y \rangle, \bar{x}\bar{y} - \bar{x}\bar{y}, \sigma_{xy}^2, \text{cov}(x), C(x, y) \)

- **Standard deviation**
 \(\sqrt{\langle x^2 \rangle - \langle x \rangle^2}, \sqrt{\bar{x}^2 - \bar{x}^2}, \sigma_x, \text{std}(x) \)
Pearson’s correlation coefficient

\[\rho(x, y) = \frac{\langle (x - \langle x \rangle)(y - \langle y \rangle) \rangle}{\sqrt{\langle (x - \langle x \rangle)^2 \rangle \langle (x - \langle x \rangle)^2 \rangle}} \]

\[\rho(x, y) = \frac{C(x, y)}{\sigma_x \sigma_y} \quad \text{shorter-form notation} \]
Pearson’s correlation coefficient and covariance only measure *linear dependency*
Robust statistics?

- Mean, variance are easy to compute, widely used/useful.
- But not robust: sensitive to outliers.
- More robust alternative to mean: median.
APPLICATION

LINEAR REGRESSION IN TERMS OF SAMPLE STATISTICS
Regression: curve-fitting

Scalar explanatory variable (X) and response variable (Y); N samples

\[
\{(x_1, y_1), (x_2, y_2), \cdots, (x_N, y_N)\}
\]

\[
\tilde{y}(x) = w_0 + w_1 x + \cdots + w_M x^M = \sum_{j=0}^{M} w_j x^j
\]

free parameters: \((w_0, w_1, \cdots, w_M)\)
Linear least-squares regression

\[E = \frac{1}{2} \sum_{n=1}^{N} [\tilde{y}(x_n; w) - y_n]^2 \]

\[= \frac{1}{2} \sum_{n=1}^{N} \left[\sum_{j=0}^{M} w^j x_n^j - y_n \right]^2 \]

\[= \frac{1}{2} \sum_{n=1}^{N} [w^0 + w^1 x_n - y_n]^2 \]

To solve for best \(w^0, w^1 \):

\[\frac{dE}{dw^0} = 0, \quad \frac{dE}{dw^1} = 0 \]
Linear least-squares regression

\[E = \frac{1}{2} \sum_{n=1}^{N} [w^0 + w^1 x_n - y_n]^2 \]

\[\frac{dE}{dw^0} = \sum_{n=1}^{N} \left[w^0 + w^1 x_n - y_n \right] \]

\[= N w^0 + N w^1 \langle x \rangle - N \langle y \rangle = 0 \]

\[w^0 + w^1 \langle x \rangle - \langle y \rangle = 0 \] \hspace{1cm} (1)
Linear least-squares regression

\[E = \frac{1}{2} \sum_{n=1}^{N} [w^0 + w^1 x_n - y_n]^2 \]

\[
\frac{dE}{dw^1} = \sum_{n=1}^{N} [w^0 + w^1 x_n - y_n] x_n
\]

\[
= N w^0 \langle x \rangle + N w^1 \langle x^2 \rangle - N \langle xy \rangle = 0
\]

\[w^0 \langle x \rangle + w^1 \langle x^2 \rangle - \langle xy \rangle = 0 \quad (2) \]
Linear least-squares regression

\[w^1 = \frac{C(x, y)}{C(x, x)} \quad \text{slope} \]
\[w^0 = \langle y \rangle - w^1 \langle x \rangle \quad y - \text{intercept} \]

In homework: check matlab’s polyfit with this optimal expression for linear-least squares fitting.
Linear least-squares regression

\[w^1 = \frac{C(x, y)}{C(x, x)} \]

\[w^0 = \langle y \rangle - w^1 \langle x \rangle \]

Contrast with \(w^1 \): Pearson’s correlation

\[\rho(x, y) = \frac{C(x, y)}{\sigma_x \sigma_y} \]

Different normalizations:
- Different correlation coefficient for same slope but different amounts of \(x,y \)-scatter.
- Same correlation for different slopes and different \(x,y \) scatter.
- Correlation: more strongly penalizes \(y \)-scatter, more weakly penalizes \(x \)-scatter.
Slope versus Pearson’s correlation coefficient

Same slope, different ρ

Different slope, same ρ

From: https://en.wikipedia.org/wiki/Correlation_and_dependence
Application

BACK TO SAMPLE STATISTICS: MULTIVARIATE
Multiple variables: covariance matrix

\[\{ x_{\alpha 1}, \cdots, x_{\alpha N} \} \quad \text{N samples of the } \alpha \text{th variable } x_{\alpha} \]

K different variables \(x_\alpha \), labeled by \(\alpha, \beta = \{1, \ldots, K\} \):

\[
C_{\alpha \beta} \equiv \frac{1}{N - 1} \sum_{i=1}^{N} (x_{\alpha i} - \langle x_\alpha \rangle)(x_{\beta i} - \langle x_\beta \rangle)
= \text{cov}(x_\alpha, x_\beta)
\]

\(K \times K \) dim since \(K \) variables

sample covariance matrix
Covariance matrix

- \((\alpha, \beta)\) element is covariance between \(x_\alpha, x_\beta\).
- Diagonal of covariance matrix is variance of each variable: \(\text{var}(x_\alpha)\) or \(C(x_\alpha, x_\alpha)\).
- \(K^2\) entries total, but only half of off-diagonal terms are independent because of symmetry \((C(x_\beta, x_\alpha) = C(x_\alpha, x_\beta))\).
- Thus only \((K^2-K)/2 + K = K(K+1)/2\) independent terms.

Q’s: How do do linear regression in multivariate case? Will it involve covariance matrix?
Covariance example I

\(x, y\) independent

\[
x = \text{randn}(1000, 1)
y = \text{randn}(1000, 1)
\]

\[
C = \begin{bmatrix}
 0.959 & 0.009 \\
 0.009 & 1.069
\end{bmatrix}
\]
Covariance example III

\[x, y \text{ not independent} \]

\[
x = \text{randn}(1000, 1) \\
y = 0.5 \cdot x + 0.5 \cdot \text{randn}(1000, 1)
\]

\[
C = \begin{bmatrix}
0.907 & 0.464 \\
0.464 & 0.469
\end{bmatrix}
\]
Summary

• Defined sample mean and variance of a variable
• Defined covariance between a pair of variables
• Solved optimal (least-squares) linear regression between two variables in terms of mean, covariance
• Covariance matrix: covariance between all $K(K+1)/2$ unique pairs of K variables