Excitatory heterogeneous intensity-based model

Network topology with k neurons

Stochastic equation:

$$\lambda_i(t) = \lambda_i(0) + \frac{1}{\epsilon_i} \int_0^t (b_i - \lambda_i(s)) \, ds + \sum_{j \neq i} \mu_{ij} \int_0^t N_j(ds) + \int_0^t (b_i - \lambda_i(s)) N_i(ds)$$

Infiniteimal generator: test function $f: (\mathbb{R}^+)^k \rightarrow \mathbb{R}$

$$\mathcal{L}[f](\lambda_1, \ldots, \lambda_k) = \sum_i \frac{b_i - \lambda_i}{\epsilon_i} \frac{\partial}{\partial \lambda_i} f(\lambda_1, \ldots, \lambda_k)$$

$$+ \sum_i \left[f(\lambda_i + \mu_i) - f(\lambda_i) - \lambda_i \mu_i \right] \lambda_i$$

If interactions are equivalent to a smooth drift $\alpha_i(t)$ then Fokker-Planck equation reads

$$\partial_t \pi_i(\lambda_i, t) = -\partial_{\lambda_i} \left[\frac{b_i - \lambda_i}{\epsilon_i} + \alpha_i(t) \right] \pi_i(\lambda_i, t) - \lambda_i \pi_i(\lambda_i, t) + \int_0^\infty \lambda \pi_i(\lambda, t) \, d\lambda S_\lambda(\lambda_i)$$
Thermodynamic mean-field limit

A single neuron in a population of \(N \) neurons with interpopulation connectivity \(\frac{\mu_{ij}}{N} \) is subjected to \(\beta_i(t) \).

\[
\alpha_i(t) = \frac{1}{N} \sum_{j \neq i} \sum_{m=1}^{N} \mu_{ij} \Re \langle \tilde{N}_j \rangle(t) \rightarrow \sum_{m=1}^{N} \mu_{ji} \int_0^{+\infty} \lambda \rho_i(\lambda, t) d\lambda
\]

law of large number

The stationary Fokker-Planck equation is solved by

\[
p_i(\lambda) = \frac{e^{\frac{\lambda^2}{2} - \frac{\lambda_i^2}{2} - \frac{\lambda_i^2}{2}}}{15i - \lambda} \left| \frac{\lambda_i^2}{\lambda_i - \lambda} \right| \beta_i z_i \mathbb{1}_{[\lambda_i, \infty]}(\lambda)
\]

Normalization condition - \(\int p_i(\lambda) d\lambda = 1 \) \(\beta_i = F(\beta_i) \)

input/output relation

Thermodynamic mean-field approximation may fail when the dynamics is correlation dominated or when finite size effects are not negligible.
Replica mean-field limit

Get rid of correlations but keep finite-size effect (adapted to sparse network).

\[R \text{-replica model are made of } R \text{ identical copies of } K \text{ neurons. When a neuron from replica } r \text{ spikes, it delivers interaction to randomly chosen target neuron across replicas.} \]

The replica-mean-field limit is obtained by taking \(R \rightarrow \infty \).

The probability for two replica to interact in finite time vanishes with \(R \rightarrow \infty \). Neurons become asymptotically independent.

Self-consistency equations:

\[\beta_i \quad \mu_{ij} \quad \beta_j \]

\[\beta_k \rightarrow \mu_{jk} \rightarrow \text{neuron } i \rightarrow \beta_i \]

independent inputs \quad \text{outputs (non Poisson)}
Generating Function: Formalism

Characterizing stationary state via functional transform, typically the moment-generating function, \(u \rightarrow \mathbb{E}[e^{uX}] = L(u) \).

Equations specifying \(L_i(\cdot) \) are most conveniently obtained via rate conservation principles.

We have:

\[
e^{u_i(t)} = e^{u_i(0)} + \frac{\mu_i}{\tau_i} \int_0^t (b_i - \lambda_i(s)) e^{u_i(s)} \, ds
\]

\[
+ \sum_{i \neq i} \left(e^{u_i(0)} - 1 \right) \int_0^t e^{u_i(s)} N_i(ds)
\]

\[
+ \int_0^t (e^{u_i(s)} - e^{u_i(0)}) N_i(ds)
\]

Taking expectation with respect to the stationary measure for which \(\mathbb{E}[e^{u_i(t)}] = \mathbb{E}[e^{u_i(0)}] \), leads to:

\[
\frac{\mu_i}{\tau_i} \mathbb{E}\left[(b_i - \lambda_i) e^{u_i(t)}\right] = \sum_{i \neq i} \left(e^{u_i(0)} - 1 \right) \mathbb{E}\left[\int_0^t e^{u_i(s)} N_i(ds) \right]
\]

\[
+ \int_0^t \mathbb{E}\left[(e^{u_i(s)} - e^{u_i(0)}) N_i(ds) \right]
\]

Palm calculus:

\[
= \sum_{i \neq i} \left(e^{u_i(0)} - 1 \right) \beta_i \mathbb{E}_0 \left[e^{u_i(0)} \right]
\]

\[
+ \beta_i \mathbb{E}_0 \left[e^{u_i(0)} - e^{u_i(0)} \right]
\]
The parameters β_i have been introduced as free parameters. Solving the replica-mean-field problem amounts to specifying the parameters β_i.

$$\frac{\partial}{\partial t} E[e^{\mu_i}] - E[\chi_i e^{\mu_i}] = \sum_{j \neq i} (e^{\mu_j} - 1) \beta_j \frac{\partial}{\partial t} E[e^{\mu_i}]$$

$$+ \beta_i (e^{\mu_i} - E[e^{\mu_i}])$$

Papangelou Theorem

$$= \sum_{j \neq i} (e^{\mu_j} - 1) E[\chi_j e^{\mu_i}]$$

$$+ \beta_i e^{\mu_i} - E[\chi_i e^{\mu_i}]$$

Replica-mean-field

$$= \sum_{j \neq i} (e^{\mu_j} - 1) \beta_j E[e^{\mu_i}]$$

$$+ \beta_i e^{\mu_i} - E[\chi_i e^{\mu_i}]$$

$$L_i(u) = E[e^{\mu_i}], \quad \frac{\partial}{\partial u} L_i(u) = E[\chi_i e^{\mu_i}]$$

System of ODE:

$$-(1 + \frac{\mu}{\tau_c}) \frac{\partial}{\partial u} L_i + (\frac{u \beta_i}{\tau_i} + \sum_{j \neq i} (e^{\mu_j} - 1) \beta_j) L_i + \beta_i e^{\mu_i} = 0$$

$$u = 0 \Rightarrow -\frac{\partial}{\partial u} L_i(0) + \beta_i = 0 \quad \checkmark$$

$$L_i(u) = 1$$

The parameters β_i have been introduced as free parameters. Solving the replica-mean-field problem amounts to specifying the parameters β_i.

$$L_i(u) = 1$$
In principle, the replica-mean-field ODE admits an infinity of solutions. However, "physical solutions", which corresponds to a probabilistic model, satisfies strong regularity properties. In particular, they analytical function.

ODE of the form:

\[-(1 + \frac{u}{z_i}) \partial_u L_i + F_i(u) L_i + g_i(u) = 0\]

\[F(-z_i) > 0\]

Simple analytical considerations show that there is a unique continuous (analytic) solution:

\[L_i(u) = \int_{-z_i}^{u} e^{-\frac{\int_{v}^{u} F_i(w) \, dw}{1 + \frac{u}{z_i}}} \frac{g_i(v) \, dv}{1 + \frac{v}{z_i}}\]

\[\uparrow\]

choice of the bound dictated by continuity

\[\beta_i\] obtained from normalization condition: \[L_i(0) = 1\]